Appunti

In questa pagina ho raccolto una serie di note (in formato pdf) su alcune lezioni di Analisi Matematica e una serie di appunti – note, perlopiù – di aerodinamica classica. spikey.png
Nonostante abbia posto ogni cura per verificare la completezza e la precisione delle informazioni contenute nelle note presenti in questa pagina, tutto il materiale viene fornito “così com’è”,
senza alcuna garanzia di alcun tipo. Sono grato, fin d’ora, a chiunque vorrà segnalarmi gli (eventuali) errori presenti in queste note: sarà mia cura provvedere a verificarli e, successivamente, a modificare le note.
Tutto il materiale qui presente è distribuito sotto licenza Creative Commons con le seguenti condizioni: Attribuzione-Non commerciale-Condividi allo stesso modo 2.5 Italia License. Per maggiori informazioni non esitate a contattatarmi (potete anche usare i commenti presenti in questa pagina).

 

Analisi Zero

In questo lavoro sono raccolte alcune nozioni dell’Analisi Matematica che hanno carattere preliminare.

Ecco un elenco, sommario e incompleto, degli argomenti trattati: Campo reale, principio d’induzione, reale, naturale, insiemi, unione, intersezione, funzione, reali, naturali, interi, razionali, gruppo commutativo, campo, sottoinsieme induttivo, strutture algebriche, regole, operazioni, induzione, principio d’induzione, teorema binomiale, formula di Abel, infinito, iniettivo, suriettivo, compattezza, proprietà archimedea, densità, massimo, minimo, estremo superiore, estremo inferiore, insieme contiguo, divisibilità, numeri primi, rappresentazione decimale, valore assoluto, potenza, logaritmo.

page_white_acrobatAnalisi zero

 

Funzioni : Uno dei concetti più importanti di tutta la matematica per i suoi sviluppi e per la sua generalità è senz’altro la nozione di funzione (o applicazione). Spesso risulta sufficiente affrontare lo studio di tale nozione basandosi su una definizione che trova la sua giustificazione nel concetto intuitivo di corrispondenza, concetto che in un tale contesto non viene formalizzato.
In queste note, per quanto possibile, introdurremo il concetto formale di funzione e ne discuteremo alcune proprietà fondamentali.

page_white_acrobatFunzioni

 

Calcolo Combinatorio : Queste pagine non hanno alcuna pretesa di completezza e riguardano essenzialmente l’applicazione di concetti elementari del calcolo combinatorio.

page_white_acrobatCalcolo Combinatorio

 

Fortran 90/95 – In queste note vengono trattate in modo completo gli aspetti più moderni ed efficienti del Fortran 90/95. Sono state, invece, volutamente tralasciate tutte quelle forme divenute obsolete o ufficialmente definite come tali dallo standard e candidate ad essere rimosse dal prossimo lavoro di standardizzazione (come il formato fisso di editing, l’IF aritmetico, le funzioni interne a singola istruzione, la dichiarazione di tipo CHARACTER*n , l’istruzione GOTO calcolato, le terminazioni di DO condivise o su istruzioni diverse da END DO) e quelle già eliminate dallo standard del Fortran 95 (costanti di Hollerith, le istruzioni PAUSE e ASSIGN ed il GOTO assegnato, l’uso di variabili di ciclo di tipo reale o doppia precisione). Sono state, inoltre, del tutto ignorate dalla trattazione tutte quelle forme appartenenti ad un Fortran primordiale inerenti la gestione dei dati condivisi (blocchi COMMON, istruzione EQUIVALENCE), la formattazione dei record e la gestione delle memorie di massa (gli specificatori BLANK, ERR ed END e i descrittori P, BZ, BN, S, SP ed SS) o relativi alla dichiarazione o alla inizializzazione di variabili (istruzioni IMPLICIT e DATA, sottoprogrammi BLOCK DATA, lo specificatore di tipo DOUBLE PRECISION e le dichiarazioni di array di dimensioni fittizie) e, infine, alcune strutture di controllo ridondanti e superate (istruzione CONTINUE, subroutine ad ingressi ed uscite multipli), tutti efficacemente sostituite da forme più moderne ed efficienti. Per la stessa ragione è stato dedicato pochissimo spazio all’istruzione di salto incondizionato, all’inclusione di file attraverso l’istruzione INCLUDE e alle istruzioni di dichiarazione PARAMETER e DIMENSION nonché al meccanismo di dichiarazione implicita dei dati, inseriti comunque nella trattazione ma esclusivamente per motivi di completezza.

page_white_acrobatFortran 90/95

 

Gli appunti che seguono sono il tentativo di organizzare, in modo omogeneo e completo, un intero corso di Analisi Matematica II.

Ecco, in sintesi, l’indice degli argomenti trattati:
Capitolo 1 : Lo spazio euclideo reale a k dimensioni. Lo spazio vettoriale {R}^k;
Capitolo 2 : Funzioni reali di k variabili reali. Funzioni vettoriali.
Capitolo 3 : Calcolo differenziale.
Capitolo 4 : Integrazione.
Capitolo 5 : Integrazioni delle funzioni di più variabili reali.
Capitolo 6 : Curve. Integrali curvilinei. Forme differenziali lineari.
Capitolo 7 : Superfici. Integrali superficiali.
Capitolo 8 : Successioni e serie di funzioni reali di una variabile reale.
Capitolo 9 : Equazioni differenziali ordinarie.
Appendice A : Infiniti e infinitesimi.
Appendice B : Calcolo degli integrali indefiniti.
Appendice C : Relazioni ed osservazioni utili.
Appendice D : Sviluppabilità e sviluppi in serie di Mc-Laurin di alcune funzioni reali.
Appendice E : Gli spazi vettoriali C^n, D^n, F^n e C^{\infty}.
Appendice F : Derivata di un determinante.
Appendice G : Estremi relativi ed assoluti.
Appendice H : Equazioni differenziali non lineari.

page_white_acrobatAnalisi Matematica II

 

Problem Solving – I dati [download]